
Adaptive Sorting Using Machine Learning
Somshubra Majumdar, Ishaan Jain, Kunal Kukreja, Professor Kiran Bhowmick

Computer Engineering Department, Mumbai University
Dwarkadas J. Sanghvi College of Engineering

Plot No. U-15, J.V.P.D. Scheme, Bhaktivedanta Swami Marg, Vile Parle (West), Mumbai-400056, India.

Abstract- Sorting algorithms and their implementations in
modern computing requires improvements in sorting large
data sets effectively, both with respect to time and memory
consumed. This paper is aimed at reviewing multiple adaptive
sorting algorithms, on the basis of selection of an algorithm
based on the characteristics of the data set. Machine Learning
allows us to construct an adaptive algorithm based on the
analysis of the experimental data. We reviewed algorithms
designed using Systems of Algorithmic Algebra and Genetic
Algorithms. Both methods are designed to target different use
cases. Systems of Algorithmic Algebra is a representation of
pseudo code that can be converted to high level code using
Integrated toolkit for Design and Synthesis of programs, while
the Genetic Algorithm attempts to optimize its fitness function
and generate the most successful algorithm.

Keywords- Sorting, Machine Learning, Object oriented
programming

I. INTRODUCTION
Sorting is defined as the operation of arranging an

unordered collection of elements into monotonically
increasing (or decreasing) order. Specifically, S = {a1, a2
….an} be a sequence of n elements in random order;
sorting transforms S into monotonically increasing
sequence S’= {a1 ’, a2 ’…… an ’} such that ai ’≤ aj’ for 1≤
i ≤ j ≤ n, and S’ is a permutation of S [1].

There are certain characteristics of a data set that can
be preprocessed to obtain some valuable information about
the data set itself. A few characteristics obtained from a
data set are its size and the degree of pre-sortedness.
Different sizes of a data set necessitate utilization of
different algorithms to sort them. Pre-sortedness can be
described as the degree to which the initialized data set is
already sorted. A sequence of integers to be sorted could be
characterized by more than its length, but also by its degree
of pre-sortedness. Three measures of pre-sortedness are
used [2]:
• The number of inversions (INV),
• The number of runs of ascending subsequences (RUN)
• The length of the longest ascending subsequence

(LAS)
RUN metric is shown to be the most efficient. RUN is

calculated as number of subsets of the data set that are
already sorted divided by the number of elements in the
data set itself. A data set sorted in the descending order will
have a pre-sortedness value of 1 while a data set sorted in
the ascending order will have a value equal to 1/n.

Using the aforementioned characteristics of the data set,
we can make use of certain strategies to optimize the
performance of the algorithm used to sort the set. Two

main strategies that can be used are Machine Learning and
Genetic algorithm. Machine learning allows us to classify
the data for making decisions on which algorithm is
optimal, while Genetic Algorithm modifies itself to
optimize the performance of the algorithm. We discuss
these two in detail below.

Machine learning explores the study and construction
of algorithms that can learn from and make predictions on
data [3]. Such algorithms operate by building a model from
example inputs in order to make data-driven predictions or
decisions [4], rather than following strictly static program
instructions. We can categorize machine learning
techniques based on the desired output of a machine-
learned system [4]:
• Classification : Input sets are classified into one or

more output classes based on a model
• Regression: the outputs are continuous rather than

discrete values.
• Clustering: Inputs are divided into output groups.

However, unlike classification, the groups are not
known beforehand

Genetic algorithm is a search technique that simulates
the process of natural selection. This technique is routinely
used to obtain useful solutions to optimization and search
problems. Genetic algorithm techniques are inspired by
natural evolution - as in inheritance, mutation, selection and
crossover. In such an algorithm, a set of possible candidate
solutions to an optimization problem is evolved toward
better solutions. Each candidate solution has a set of
properties (its chromosomes or genotype) which can be
mutated and altered [5].

In this paper, in section 2, we discuss the features of
the data set that we utilize, along with the various
approaches to solve this problem. In section 3, we discuss
our proposed model as well as methodology in creating the
data sets and pre-sorting them. In section 4, we conclude
with our future work.

II. LITERATURE SURVEY
An adaptive sorting algorithm is developed with the

help of some pre-existing well known sorting algorithms,
namely - Insertion sort, Shell sort, Heap sort, Merge sort
and Quicksort. An adaptive sorting algorithm uses certain
characteristics of the input dataset to select one or more
sorting algorithms to sort the dataset. Generally pre-
sortedness is computed using the RUNS metric, which is
described as the number of sorted subsets or the data set,
divided by the number of elements in that dataset.

ISSN:0975-9646

Somshubra Majumdar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 490-493

www.ijcsit.com 490

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Learning
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Cluster_analysis

Machine learning is similar to computational statistics
in the sense that it also focuses on prediction-making. It has
strong ties to mathematical optimization, which delivers
implementations, theory and application domains to the
field. Machine learning is used in a range of digital tasks
where coding and implementing explicit algorithms is
infeasible [4]. Example applications include spam filtering,
speech and handwriting recognition, sentiment analysis,
Natural Language Processing (NLP) and computer vision.
Machine learning and pattern recognition can be viewed as
two facets of the same field.

Algebraic algorithmics (AA in short) is an important
domain of computer science, which was born from a
collaboration of algebra, logic and algorithm schemes. It
provides a standard for the knowledge about subject
directions with the help of algebra and also deals with
obstacles like standardization, specification of correctness
and modification of algorithms. AA uses high-level
abstractions of programs, represented by Systems of
Algorithmic Algebras (SАА). One of the fundamental
problems of AA is to increase the degree of flexibility of
programs to particular use cases. Specifically, the problem
can be solved at the disadvantage of argument-motivated
creation of algorithm specifications by means of more
complex algorithms [6].

Genetic algorithms are widely used in obtaining
solutions for optimization and search problems. Evolution
of the candidate solutions starts from a random population.
This is an iterative process, where the population in each
iteration is called as a generation. In every epoch, the
fitness of every individual in the pool is evaluated such that
the fitness is usually the value of the heuristic function in
the optimization problem under consideration. A genetic
algorithm requires a representation of the solution space (in
the form of an array of bits) and a fitness function to test
the solution space [8]. After the genetic representation and
the fitness function is defined, a Genetic Algorithm begins
by initializing a population of candidate solutions and then
attempts to improve it through multiple applications of the
mutation, crossover, inversion and selection operations on
the population [8].

The authors of the paper “Optimizing Sorting with
Machine Learning Algorithms” [7] talks about two
methods of generating efficient sorting techniques. The first
one uses machine learning algorithms to generate a
function for specific target machine that is used to select
the best algorithm. Their second approach builds on the
first approach and constructs new sorting algorithms from a
few fundamental operations. Using the array size, they are
able to determine if the input set can fit into the cache
memory and using the entropy of the input data,
differentiate between the relative performances of radix
sort with other comparison based sorting algorithms. Using
sorting primitives as operations in genetic algorithms, they
are able to create a composite algorithm which outperforms
several other algorithms.

Yatsenko proposes the use of Decision Trees to
classify the best sorting algorithm for the given data set
[11]. They consider five sorting algorithms, mainly
Insertion sort, Merge sort, Quick sort, Heap sort and Shell

sort to analyses and decide the best algorithm for the given
data set. They do this using various Decision Tree learning
algorithms such as ID3, C4.5, NewId, ITrule and CN2.
They then use SAA to formalize the algorithm used for
conversion into C++ and Java code using IDS (Integrated
toolkit for Design and Synthesis of programs). The
drawbacks of this analysis is that there has been no
consideration for multi-threaded algorithms which would
drastically improve sorting time and also the fact that the
study focuses on only smaller data sets (size < 100).

Before we analyze the adaptive sorting algorithm, we
first need to analyze the performance of various standard
sorting algorithms and their time and space complexities,
expressed using the Big O notation.

TABLE 2.1 Comparison of Sorting Techniques Based on the Parameters
of Our Model Based on Previous Studies and Our Experimental Results
[10]

Sorting
Method

Best Case
Time

Complexity

Worst Case
Time

Complexity

Space
Complexity

Bubble Sort O(n) O(n2) O(1)
Insertion Sort O(1) O(n2) O(n)
Shell Sort O(n log2 n) O(n2) O(n)
Heap Sort O(n) O(n log n) O(1)
Quicksort O(n log n) O(n2) O(log n)
Merge Sort O(n log n) O(n log n) O(n)

Based on a preliminary analysis of the various sorting
algorithms widely known, we can eliminate the use of
certain algorithms that do not perform well for any case, or
are too primitive to produce the output efficiently. Sorting
techniques such as Bubble Sort and Selection sort have an
average case complexity of O(n2) with best case complexity
of O(n) and O(n2) respectively. Other considered sorting
algorithms perform relatively better for all cases and as
such negate the usage of Bubble and Selection Sort. The
exception here is that while Insertion sort also has a
complexity of O(n2), it’s best case complexity is only O(1),
which means that there are edge cases in which insertion
sort produces the output in least time as compared to the
other algorithms.

III. PROPOSED MODEL AND METHODOLOGY
A. Construction of Data Set:

Since we do not have an example data set to utilize for
our analysis, we begin by generating a data set consisting
of integers generated using a uniform Gaussian random
number generator. Data sets of sizes varying sizes from 50
to 1 million uniformly distributed integers is generated.
Due to the requirement of preprocessed arrays, we create 7
such replicas of each data set, whose subsets are then sorted
according to the given input parameters of “pre-sortedness”.
Thus each replicated dataset is pre-sorted according to the
vector of 1/n to 1 where n is the size of the data set. Thus
we create 42 data sets each having nearly 100 sample
arrays. The exception to this is the data set of 1 million
integers, of which there are far fewer samples. This is
because the sorting time of such large data sets using
Insertion Sort and

Somshubra Majumdar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 490-493

www.ijcsit.com 491

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Spam_filter
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Fitness_(biology)
https://en.wikipedia.org/wiki/Objective_function

Shell Sort is far too large to be compared with faster
sorting algorithms such as parallel merge sort and quicksort.
It can be assumed that either parallel merge sort or
quicksort will be the winning algorithm when such large
data sets are given to the model.

Figure 3.1 describes the distribution of the generated
arrays each having been pre-sorted to various degrees of
pre-sortedness. Due to the large number of smaller sized
arrays, the number of arrays which are almost completely
sorted is higher than any other type of array.

B. Feature Selection

For our model, we will be using two features that are
characteristic to each of the data sets. The first attribute will
be the size of the array, as larger data sets cannot be sorted
in an efficient manner using algorithms such as Insertion
Sort and Shell Sort. The second attribute will be the pre-
sortedness of the array, computed as the “RUNS” metric.

𝑅𝑈𝑁𝑆 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦

Thus, for a completely sorted array, the RUNS value

will be 1 / size of the array, whereas for an array sorted in
descending order, RUNS value will be 1.

Figure 3.1 Number of instances of arrays with different

degrees of pre-sortedness (RUNS value)

C. Preprocessing

These pre-sorted data sets are then sorted using
Insertion Sort, Shell Sort, Heap Sort, Merge Sort, Quicksort,
and Parallel Merge Sort. The sorting time for each
algorithm on each array of each data set is computed and
stored for later analysis. Alongside these results, we also
determine the winning algorithm that is the algorithm
which uses the minimum time to sort the given data set. In
case of ties, we choose the algorithm which performs the
best on similar data sets. Algorithms tie when data set size
is small, as multiple algorithms sort the data set in almost

exactly the same amount of time. In such cases, we see
which algorithm generally performs as the best algorithm in
other data sets of the same size, and so assume it is also the
current winner.

Figure 3.2 Number of instances in dataset where algorithm is

the winner

In Figure 3.2, we see that depending solely on the data
set size, each algorithm is well suited to sort a given dataset
of some size in the shortest time possible. It is seen that
heap sort performs poorly for any given data set size, at
least in comparison to other more efficient algorithms such
as Merge sort and Quicksort. Due to this, we will be
removing the negligible number of instances where
heapsort outperforms other algorithms from the final
dataset.

D. Proposed Model

Following Yatsenko’s model [11], we utilize a
Decision Tree to analyze and learn the features of the array
size and degree of pre-sortedness and the winning
algorithm as the target feature. We also use Gaussian Naive
Bayes to classify the features, as well as train a multiclass
Support Vector Machine with the Linear Dual Coordinate
Descent as the optimization algorithm. The decision tree
will also attempt to classify the data set with the splitting
criterion as the gini score or with the information entropy
score. We will also attempt to limit the depth of the tree to
prevent overfitting. Naive Bayes and multi class Support
Vector Machine are also used to cross validate the
classification results.

While Yatsenko’s model [11] focused on smaller data
sets of size smaller than 100 elements, our focus is on
larger data sets of sizes in the range of 50 elements to 1
million elements. We also focus on sorting large data sets
using parallel algorithms and the threshold where thread
creation cost is insignificant compared to the gain in sorting
speed. Our model also attempt to measure the optimal
threshold for dividing a data set into partitions for
improving the performance of Merge Sort, Quick Sort and
Parallel Merge Sort.

Somshubra Majumdar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 490-493

www.ijcsit.com 492

IV. CONCLUSION
The experiment is aimed at proposing a method to sort

large data sets using Machine Learning while reviewing
other methods such as Genetic Algorithms. Machine
Learning allows us to build an algorithm to sort data sets
based on their characteristics. The characteristics that
affected the sorting time of the algorithm were then
identified based on the results obtained in Figure 3.2. A
means of representing these characteristics has been
developed to facilitate error free classification by using a
Machine Learning algorithm. These characteristics i.e size
and pre-sortedness, will be the features of our data set,
which acts as the input to our supervised classification
learning algorithm.

The prospects of further investigations in this direction
are to review different classification algorithms to pick the
best one. Based on the results obtained, we can add more
features that improve our classification. This classification
hence obtained will help us pick the best sorting algorithm
for a given data set.

REFERENCES
[1] M.J. Quinn, “Parallel Programming in C with MPI and OpenMP”

Tata McGraw Hill Publications, 2003, p. 338
[2] Guo, H.: “Algorithm selection for sorting and probabilistic

inference: A machine learning-based approach”. Ph.D. dissertation,
Kansas State University (2003)

[3] Ron Kohavi; Foster Provost (1998). "Glossary of terms". Machine
Learning 271–274.

[4] C. M. Bishop (2006). Pattern Recognition and Machine Learning.
Springer.ISBN 0-387-31073-8.

[5] Mitchell, Melanie (1996). An Introduction to Genetic Algorithms.
Cambridge, MA: MIT Press. ISBN 9780585030944.

[6] Doroshenko, A., Tseytlin, G., Yatsenko, O., Zachariya, L.:
Intensional Aspects of Algebra of Algorithmics. Proceedings of
International Workshop “Concurrency, Specification and
Programming” (CS&P’2007), 27–29 September 2007, Lagow
(Poland) (2007)

[7] Li, Xiaoming, Maria Jesus Garzaran, and David Padua. “Optimizing
Sorting With Machine Learning Algorithms.” 2007 IEEE
International Parallel and Distributed Processing Symposium
(2007): n. pag. Web.

[8] Whitley, Darrell (1994). "A genetic algorithm tutorial". Statistics
and Computing 4 (2): 65–85. doi:10.1007/BF00175354

[9] "The Analysis of Heapsort". Journal of Algorithms 15: 76–
100.doi:10.1006/jagm.1993.1031.

[10] Donald Knuth. The Art of Computer Programming, Volume 3:
Sorting and Searching, Third Edition. Addison-Wesley, 1997. ISBN
0-201-89685-0.

[11] Olena Yatsenko. (2011). On Application of Machine Learning for
Development of Adaptive Sorting Programs in Algebra of
Algorithms, Concurrency, Specification and Programming,
September 28-30, Pułtusk, Poland, pp. 577-588

Somshubra Majumdar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 490-493

www.ijcsit.com 493

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Special:BookSources/0201896850
https://en.wikipedia.org/wiki/Special:BookSources/0201896850

